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Abstract

As computers with tens of thousands of processors are successfully delivering high
performance power for solving some of the so-called \grand-challenge" applications,
the notion of scalability is becoming an important metric in the evaluation of paral-
lel machine architectures and algorithms. In this study, the prediction of scalability
and its application are carefully investigated. A simple formula is presented to show
the relation between scalability, single processor computing power, and degradation of
parallelism. A case study is conducted on a multi-ring KSR-1 shared virtual memory
machine. Experimental and theoretical results show that the in
uence of topology vari-
ation of an architecture is predictable. Therefore, the performance of an algorithm on a
sophisticated, hierarchical architecture can be predicted and the best algorithm-machine
combination can be selected for a given application.
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1 Introduction

With modern technology, parallel processing seems to be the only way to achieve higher perfor-

mance. In recent years, various architectures have been proposed to connect a large number of

processors into a single powerful machine; and various algorithms have been developed on these

machines to explore the potential of high computation power. However, each architecture has

distinct properties, and each algorithm has its own inherent data structures. The performance of

an algorithm on a particular architecture may vary signi�cantly as the system and problem sizes

increase. Predicting the performance of an algorithm-machine combination is di�cult and elusive.

There are two commonly used synchronization and communication models: message-passing and

shared-memory. Processes communicate through explicit message passing in the message-passing

model and through shared variables in the shared-memory model. Traditionally, message-passing

is the natural choice of distributed-memory machines. With shared virtual address space, shared

virtual memory can be supported on distributed-memory machines, but requires sophisticated

hardware and system support. Shared virtual memory machines combine the merits of both the

distributed-memory machines and the shared-memory communication model. They are scalable

and provide sequential-like programming environment. However, performance prediction of shared

virtual memory machines is more di�cult than that of traditional message-passing machines, be-

cause their communication is implicit and memory access time is non-uniform.

Simply speaking, a scalable architecture is an architecture capable of yielding very high raw

computation power when the system size is large. However the high computation power may not

be realized in solving a given application, since the achievable e�ciency of an application may

drop quickly with the increase of system size. To evaluate the ability of maintaining performance,

several metrics have been proposed to measure the scalability of algorithm-machine combinations

[2, 3, 7, 8, 11]. Isospeed scalability [8] is one of the proposed metrics. It measures the ability

of an algorithm-machine combination to maintain unit processor speed. Through a case study in

this paper, we investigate issues of performance prediction of shared virtual memory machines.

Performance models are developed in terms of execution time and scalability. Experimental results

on a 64-node Kendall Square KSR-1 show that, when performance information of small scale

systems is available, the performance of large scale systems can be predicted. Thus, machine

architectures and algorithms can be compared in terms of scalability without run-time information.

Since a 64- node KSR- 1 is a shared virtual memory machine with variable memory access times, the

experience learned in this study is reasonably general and should extend to a class of applications.

The paper is organized as follows. In section 2, we �rst review isospeed scalability, then the

properties of isospeed scalability are discussed. Performance formulas also developed to show the

relations between execution time and scalability and to show possible approaches of predicting

scalability. In Section 3, the regularized least squares application and the KSR-1 architecture are
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introduced. Theoretical analysis is given to �nd the performance bound of the application and

to develop the performance model of the algorithm-machine combination. Experimental details

and results, which match the predicted performance closely, are given in Section 4. A practical

method is introduced to measure the memory access delay and other system overhead of the multi-

level ring, shared virtual memory machine. Performance prediction without run-time information

and selection of an appropriate algorithm-architecture combination for a given application are also

discussed in Section 4. Finally, the summary is given in Section 5.

2 De�nition and Analysis

One of the main motivations of parallel processing is to solve large problems fast. Considering both

execution time and problem size, what we seek from parallel processing is speed which is de�ned

as work divided by time. In general, how work should be de�ned is controversial. For scienti�c

applications, it is commonly agreed that the 
oating point (
op) operation count is a good estimate

of work (problem size)1. The average unit speed (or average speed, in short) is a good measure of

parallel processing speed.

De�nition 1 The average unit speed is the achieved speed of the given computing system di-

vided by p, the number of processors.

In the ideal situation, average speed remains constant when system size increases. Hardware

peak performance provided by vendors is usually based on this ideal assumption. If problem size

is �xed, the ideal situation is unlikely to happen in practice, since when problem size is �xed,

the communication/computation ratio is likely to increase with the number of processors, and

therefore, the speed will decrease with increased system size. On the other hand, if system size is

�xed, communication/computation ratio is likely to decrease with increased problem size for most

practical algorithms. For these algorithms, increasing problem size with the system size may keep

the average speed constant. Based on this observation, the isospeed scalability has been formally

de�ned as the ability to maintain the average speed in [8].

De�nition 2 An algorithm-machine combination is scalable if the achieved average speed of

the algorithm on the given machine can remain constant with increasing numbers of processors,

provided the problem size can be increased with the system size.

For a large class of algorithm-machine combinations, the average speed can be maintained by

increasing problem size [8]. The necessary increase of problem size varies with algorithms, machines,

1Some authors refer to problem size as the parameter that determines the work, for instance, the order of matrices.
In this paper, problem size refers to the work to be performed and we will use problem size and work alternatively.
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and their combinations. This variation provides a quantitative measurement for scalability. Let

W be the amount of work of an algorithm when p processors are employed in a machine, and

let W 0 be the amount of work needed to maintain the average speed when p0 > p processors are

employed. Then we de�ne the scalability from system size p to system size p0 of the algorithm-

machine combination as follows:

 (p; p0) =
p0W

pW 0

(1)

The work W 0 is determined by the isospeed constraint. When W 0 =
p0

p
W , that is when average

speed is maintained with work per processor unchanged, the scalability equals one. It is the ideal

case. In general, work per processor may have to be increased to achieve the �xed average speed,

and scalability is less than one.

Speedup is a widely used performance metric in parallel processing. It is de�ned as sequential

execution time over parallel execution time and is used to measure the parallel processing gain

over sequential processing. Traditionally, parallel e�ciency is de�ned as speedup divided by p,

where p, the number of processors, is the ideal speedup. The traditional parallel e�ciency is the

e�ciency in terms of speedup. Contrary to speedup, average speed is an indicator of uniprocessor

e�ciency, where uniprocessor e�ciency is de�ned as average unit speed over peak uniprocessor

speed. Maintaining average speed is equivalent to maintaining the uniprocessor e�ciency. Under

certain assumptions, maintaining average speed is also equivalent to maintaining the parallel ef-

�ciency [9]. However, in practice, these two approaches may lead to totally di�erent results [9].

Unlike parallel e�ciency, average speed does not inherit any de�ciency of speedup. It does not

require solving large problems on a single processor and does not give credit to slow computation,

while parallel e�ciency does.

Three di�erent approaches have been proposed in [8] to obtain scalability.

1. The scalability can be measured using software by a control program that invokes the appli-

cation program and searches for the run which has the desired �xed average unit speed.

2. The scalability can be computed by �rst �nding the relation between average unit speed and

execution time (or work) and then using equation (1) (or equation (4)).

3. The scalability can be predicted by deriving a general scalability formula.

The third approach, i.e. prediction, is the topic of this study. It is the simplest one among the

three approaches, if a formula can be de�ned. A prediction formula is given in [8] for applications

where communication cost is independent of problem size and work load is balanced among pro-

cessors. By the de�nition of scalability (1), scalability can be predicted if and only if the scaled

work size, W 0, can be predicted. Proposition 1 provides a way to obtain W 0.
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Proposition 1 If parallel degradation exists, then for scalability (1)

W 0 =
ap0To

1� a4 ; (2)

where a is the �xed average speed, 4 is the computing rate of a single processor, and To is the

parallel processing overhead.

Proof: Since W 0 is the scaled work satisfying the isospeed requirement,

a =
W 0

p0Tp0(W 0)
:

The parallel execution time, Tp0(W
0), can be divided into two parts: ideal parallel processing time

and parallel processing overhead, To.

Tp0(W
0) =

T1

p0
+ To =

W 04
p0

+ To;

where T1 is the sequential execution time and T1=p
0 is the ideal parallel execution time. Thus,

a =
W 0

W 04+Top0
;

and

W 0 =
ap0To

1� a4 :

2

Note that in Equation (2), a is the achieved average speed considering the parallel processing over-

head, and 4 is the computing rate without considering the overhead. When parallel degradation

does exist (i.e. To > 0), 4�1 > a and, therefore, equation (2) is traceable. To > 0 is a necessary

and su�cient condition of Proposition 1.

Combining scalability (1) and equation (2), we have

 (p; p0) =
W (1� a4)

paTo
: (3)

Equation (3) is very useful. It not only gives a way to predict scalability, but more importantly, it

shows the following three properties of isospeed scalability.

1. Scalability (1) increases with the decrease of the �xed average speed a.

2. 4, the computing rate of a single processor, is the inverse of single processor speed. Equation

(3) shows that scalability increases with single processor speed.

3. Scalability increases with the decrease of degradation of parallelism To.
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Property 1 is very reasonable. Scalability is the ability of a computing system to maintain per-

formance when system size is scaled up. Property 1 shows that less e�ort is needed to maintain

lower e�ciency, if we consider a4 as the uniprocessor e�ciency. Equation (3) gives the relation

between the e�ort (scalability) and performance (the �xed average speed) of an algorithm-machine

combination. Property 1 also shows that, by adjusting the average speed a, isospeed scalability can

be applied to a large class of algorithm-machine combinations, from massively parallel systems with

relatively weak processing elements to supercomputers with a few powerful processors. Equation

(3) also gives the relation between isospeed scalability, computing power of a single processor, and

degradation of parallelism. Properties 2 and 3 show that isospeed scalability does not give credit

to slow computing and communication. These two properties are very important in evaluation of

computing systems. They distinguish isospeed scalability from parallel metrics based on speedup.

It is known that speedup favors parallel systems with a high communication/computing ratio [9].

Although equation (3) is very useful, using it in performance prediction may not be as simple

as it looks. The degradation of parallelism, To, which contains both communication and workload

imbalance degradation, may be di�cult to compute. Also, the single processor rate may vary with

algorithm and problem size, especially for shared virtual memory machines [9]. A detailed case

study is given in the next section to illustrate how the prediction formula could be used in practice,

and how the predicted scalability could be used to evaluate machine architectures.

Finally, equation (4) shows how parallel execution time could be computed from scalability.

Tp0(W
0) =  �1(p; p0)Tp(W ); (4)

where Tp(W ), Tp0(W
0) are the parallel execution times of solving the problem with the work of W

and W 0 on a system of p and p0 processors respectively. The computing rate of single processor,

4, is machine dependent. The degradation of parallelism, To, is both architecture and algorithm

dependent. Equation (3) gives a way to �nd a good algorithm-machine combination in terms of

scalability. Equation (4) shows larger scalability will lead to smaller execution time.

3 The Case Study

In this section, we discuss the case study for solving an application problem on KSR-1 parallel

computers. We �rst give brief descriptions of the architecture and the application problem, and

then present the measured performance and compare it with the predicted performance.

3.1 The Machine

Our case study was performed on the KSR-1 parallel computer. It has a distributed physical

memory which makes a large ensemble size possible, and a shared address space which allows users
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to develop programs in a shared-memory-like environment.
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Figure 1. Con�guration of KSR-1 parallel computers.
p: processor M : 32 Mbytes of local memory

Figure 1 shows the architecture of the KSR-1 parallel computer. Each processor on the KSR-1

has 32 Mbytes of local memory. The CPU is a super-scalar processor with a peak performance of

40 M
ops in double precision. Processors are organized into di�erent rings. The local ring (ring:0)

can connect up to 32 processors, and a higher level ring of rings (ring:1) can contain up to 34 local

rings with a maximum of 1088 processors.

Access to non-local data on KSR is provided by a hierarchy of Search Engines. The Search

Engine SE:0 locates data in the local ring, while the Search Engine SE:1 provides data access

between local rings. These di�erent Search Engines are connected in a fat-tree-like structure. The

memory hierarchy of KSR is shown in Figure 2.

Processor

512 KB
Subcache

Search Engine:0

Search Engine:1

Local Cache
32 MB

Group:0 Cache
1GB

Group:1 Cache
34 GB

Figure 2. Memory hierarchy of KSR-1.
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Each processor has 512 Kbytes of fast subcache which is similar to the normal cache on other

parallel computers. This subcache is divided into two equal parts: an instruction subcache and a

data subcache. The 32 Mbytes of local memory on each processor is called a local cache. A local

ring (ring:0) with up to 32 processors can have 1 Gbytes total of local cache which is called the

Group:0 cache. Access to the Group:0 cache is provided by Search Engine:0. Finally, a higher level

ring of rings (ring:1) connects up to 34 local rings with 34 Gbytes of total local cache which is called

Group:1 cache. Access to the Group:1 cache is provided by Search Engine:1. The entire memory

hierarchy is called ALLCACHE memory by the Kendall Square Research. Access by a processor

to the ALLCACHE memory system is accomplished by going through di�erent Search Engines as

shown in Figure 2. The latencies for di�erent memory locations [4] are: 2 cycles for subcache, 20

cycles for local cache, 150 cycles for Group:0 cache, and 570 cycles for Group:1 cache.

3.2 The Application

The numerical algorithm used in this case study is the Householder Transformation algorithm for

the QR factorization of matrices. It is used for solving the normal equation

A
T
Ax = A

T
b (5)

without explicitly forming ATA.

In many cases, for instance the inverse problem of partial di�erential equations [1], the nor-

mal equation system resulting from the discretization is too ill-conditioned to be solved directly.

Tikhnov's regularization method [10] is frequently used in this case to increase numerical stabil-

ity. The key step in solving the Regularized Least Squares Problem (RLSP) is to introduce a

regularization factor � > 0. Instead of solving (5) directly, we solve the following system

(ATA+ �I)x = A
T
b (6)

for x. Equation (6) can also be written as

(AT ;
p
�I)

0
@ A
p
�I

1
Ax = (AT ;

p
�I)

0
@ b

0

1
A (7)

or

BTBx = BT

0
@ b

0

1
A ; (8)
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so that the major task is to carry out the QR factorization for matrix B which has the structure

B =

2
6666666666666664

a
(1)
11 a

(1)
12 � � � a

(1)
1n

...
...

...
...

a
(1)

m1 a
(1)

m2 � � � a
(1)
mn

p
�
p
�

. . .
p
�

3
7777777777777775

; (9)

where we usually have m � n with m of the same order as n. Matrix B is neither a complete full

matrix nor a sparse matrix. The upper part is full and the lower part is sparse (in diagonal form).

Because of the special structure in (9), not all elements in the matrix are a�ected in a particular

transformation step. In the �rst step, all elements within the frame in matrix (9) will be a�ected.

In each new step, the frame in (9) will shift downwards one row with the left most column out of

the game. Therefore, at the ith step, the submatrix Bi a�ected in the transformation has the form:

Bi =

2
6666664

a
(i)
ii � � � � � � a

(i)
in

...
...

...
...

a
(i)
m+i�1;i � � � � � � a

(i)
m+i�1;np

� 0 � � � 0

3
7777775
: (10)

If the columns of matrix Bi of (10) are denoted by bij , i.e.

Bi = [bii b
i
i+1 � � �bin]; (11)

then the Householder Transformation can be described as:

Householder Transformation

Initialize matrix B

for i = 1, n

1: �i = �sign(a(i)ii )(bi
T

i b
i
i)
1=2

2: wi = b
i
i � �ie1

3: �j = w
T
i b

i
j(�

2
i � �ia

(i)
ii ); j = i+ 1; � � � ; n

4: bij = b
i
j � �jwi; j = i+ 1; � � �n

end for
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The calculation of �j 's and updating of bij 's can be done in parallel for di�erent indices j.

3.3 Scalability Analysis

Based on the de�nition of isospeed scalability, the workW 0 at processor number p0 should keep the

system ensemble running at the same average speed a as with p processors, so that

a =
W

pTp(W )
=

W 0

p0Tp0(W 0)
; (12)

where Tp(W ) and Tp0(W
0) are the execution times using p and p0 processors respectively.

For the particular problem discussed here, the run time model is

Tp(n) =

"
2n3

p
+ 3n2

#
� + n2�; (13)

and the work is

W (n) = 2n3 + 3n2; (14)

where n is the number of columns in a 2n � n matrix to be transformed, p is the number of

processors, � is the rate of computing without communication overhead, and � is the latency for

access of remote data in the Group:0 cache. We use � , instead of 4, to represent the computing

rate, because in practice the computing rate may vary with algorithm, problem size, and system

size. We reserve the notation 4 for the theoretical computing rate. Following the discussion given

in Section 2, the run time Tp(n) in (13) can apparently be represented as

Tp(n) = TC(n; p) + To(n; p); (15)

where TC(n; p) is the computing time with ideal parallelism and To(n; p) represents the degradation

of parallelism. We then have

TC(n; p) =
2n3 + 3n2

p
�;

To(n; p) = (3n2 � 3n2

p
)� + n2�:

The �rst term of To is due to the workload imbalance. The second term is due to the communication

(remote memory access) delay. Using relation (2) we get

W 0 =
ap0(�3n02

p0 � + 3n02� + n02�)

1� a� : (16)
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The matrix size n is the parameter used to adjust the problem size. Substituting

W 0 = 2n0
3
+ 3n0

2

into (16), we have

2n0
3
+ 3n0

2
=
ap0(�3n02

p0 � + 3n02� + n02�)

1� a�
which eventually leads to

n0 =
3a�p0 + a�p0

2(1� a�) � 3

2(1� a�) : (17)

Equation (17) is true for any work-processor pair which maintains the �xed average speed, assuming

that � and � are unchanged. In particular,

n =
3a�p+ a�p

2(1� a�) � 3

2(1� a�) : (18)

Combining equation (17) and (18), we have

(n0 � n) = 3a� + a�

2(1� a�)(p
0 � p); (19)

which shows that the variation of n is in direct proportion to the variation of ensemble size, provided

that � and � are independent of the number of processors.

Equation (19) indicates that the matrix size n0 must increase at the same rate as the number of

processors p0, to maintain the pre-speci�ed average speed a. If p0 = mp, then we will have n0 = mn.

Assuming n is large so that the cubical term in equation (14) is dominant, we have the relation

W 0(n0) = W 0(mn) � m3W (n):

Therefore, the scalability of this algorithm-machine combination can be estimated as

 (p; p0) =  (p;mp)� mp �W
pm3W

=
1

m2
: (20)

In particular, if m = 2, which means the number of processors is doubled for each case, the

scalability will be approximately 1
4
.

It is clear from (19) that the parameters � and � must �rst be determined before we can predict

the execution time and scalability. With the run-time model given by (13), we can estimate � and

� in the model to �t the measured run times using the least squares method. Assume that the

executions times Tp1(n1); � � � ; Tpk(nk) are available on p1; p2; � � � ; pk processors, with problem sizes
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being n1; n2 � � �nk respectively, we will have

� =
Pk

i=1
biTpi

Pk

i=1
c2
i
�

Pk

i=1
ciTpi

Pk

i=1
biciP

k

i=1
b2
i

P
k

i=1
c2
i
�(
P

k

i=1
bici)2

� =

Pk

i=1
b2
i

Pk

i=1
ciTpi�

Pk

i=1
bici

Pk

i=1
biTpiPk

i=1
b2
i

Pk

i=1
c2
i
�(
Pk

i=1
bici)2

(21)

where

bi =
2n3i
pi

+ 3n2i ; ci = n2i :

4 Scalability Prediction and Its Application

The peak performance provided by vendors gives the hardware performance limit but can hardly

be used to predict execution time accurately. For most application problems, the sustained speed

is only a small percentage of the peak performance. The same argument applies to communication

latency. The observed latency can be signi�cantly di�erent from the machine speci�cations. The

architecture speci�cation [4] for KSR-1 gives

� = 0:025 (�s); �1 = 7:5 (�s): (22)

To determine the value of � and � for this particular algorithm-machine pair, we ran the code on

p = 2 and 4 processors and measured the total execution time Tp(n) with n = 362 and n = 512

respectively. Then � and � are calculated using the model in (21). The parameters obtained this

way are

� 0 = 0:18 (�s); �0 = 3:37 (�s): (23)

Comparing (22) and (23), we see that � 0 is signi�cantly larger than � . The sustained computational

speed is
1

� 0
= 5:56 (Mflops)

which is about 14% of the peak performance of 40 M
ops. This speed includes all the e�ects of

subcache misses and other overheads. On the other hand, the value of �0 in (23) is signi�cantly

smaller than � of (22), which means the actual observed communication speed is faster. This can

be attributed to two factoers:

1. Overlapping of communications with computations. In the Householder transformation, one

processor calculates the pivoting column and then broadcasts it to all other processors. This

broadcasting process can be partly overlapped with the other computations.

2. Automatic prefetch. The KSR-1 Fortran compiler analyzes loops and, whenever possible,

generates instructions to prefetch remote data needed for subsequent loops, thus saving data
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access time.

2 12 22 32 42 52
Number of processors

25.0

75.0

125.0
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m

e

measured execution time
predicted execution time β’

Figure 3. Measured and predicted execution time
Problem size is scaled up with available memory

Figure 3 shows both the measured execution time and the predicted execution time in seconds.

The predicted execution time is based on equations (13) and (23). The problem size is scaled-up

using the memory-bounded scale-up model [7], i.e. when the number of processors increases, the

matrix size also increases to �ll up the available local memory. For the RLSP application, memory

requirement is a square function of the parameter n, and the computation count is a cubical function

of n. That explains why the run time goes up with more processors.

It is clear from the �gure that the predicted execution time matches the measured execution

time well until p = 22. After that, the error increases signi�cantly. This is due to the multi-ring

structure of KSR-1. Each ring has 32 processors. Since several of the 32 processors are dedicated

for I/O and control processes and are usually not used in computation, multi-ring communication

is involved even for p less than (but close to) 32. This multi-ring communication requires data

access to the Group:1 cache which slows the computations signi�cantly. The listed access time for

the Group:1 cache on KSR-1 is [4]

�2 = 28:5 (�s): (24)

Again, the measured access time for our application is signi�cantly di�erent from the listed value,

especially when most communications are within a single ring. To determine the communication

delay for multiple rings, we ran the code on 36 processors and measured the execution time. Then
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the value of � was calculated from (13) by �xing � = 0:18 (�s) as given in (23). The new � value is

�00 = 6:27 (�s) (25)

which is about twice as large as that given in (23).

36 40 44 48 52
Number of processors

25.0

75.0

125.0

175.0

225.0

Ti
m

e

measured execution time
predicted execution time using β’
predicted execution time using β’’

Figure 4. Measured execution time and predicted time using the adjusted parameters
Problem size is scaled up with available memory

Figure 4 shows the execution time for p > 32. We see that with the new value of �00, the

predicted run time matches the measured execution time nicely.

Based on the test runs on p = 2, 4 and 36 processors and equation (17), the matrix size n0 can

be predicted. Table 1 shows the predicted and measured matrix sizes respectively. The average

size 1 2 4 8 16 32 56

predicted { 54 115 238 484 976 2889

measured 29 57 109 230 461 1006 2773

Table 1. Predicted and measured matrix size

speed a maintained in this test is 3.25 M
ops, which is about 58% of the sustained speed in (23).

From Table 1 we can see that the predicted matrix size is very close to the actual matrix size

measured by running the code on 8, 16, 32, and 56 processors. The last column in Table 1 shows

the predicted size n0 using �00. If the �0 given in (23) is used in predicting the matrix size, then n0

will be 1715 at p = 56, which is signi�cantly smaller than the measured n0. The di�erence shows

13



 (p; p0) 1 2 4 8 16 32 56

1 1.00000 0.33238 0.07183 0.01652 0.00397 0.00097 0.00007

2 1.00000 0.21611 0.04971 0.01193 0.00292 0.00020

4 1.00000 0.23003 0.05520 0.01352 0.00092

8 1.00000 0.23999 0.05879 0.00398

16 1.00000 0.24499 0.01658

32 1.00000 0.06767

56 1.00000

Table 2. Predicted scalability of RLSP-KSR1 Combination

the in
uence of slower remote memory access of the Group:1 cache on scalability.

With the matrix sizes given in Table 1 and the parameters given in (23) and (25), we can compute

the scalability  (p; p0). Table 2 and 3 give the predicted and measured scalability respectively. We

can see that the predicted and measured scalabilities are fairly close. The prediction at ensemble

size of 56 is based on the justi�ed communication delay �00. Figure 5 depicts the di�erence between

the measured scalability and the predicted scalability obtained by using �0. The curves in the �gure

represent measured and predicted  (p; 56) respectively with p varying from 1 to 56. Note that in

order to see clearly the di�erence between the two curves in �gure 5, we plotted � log( (p; 56)),

instead of  (p; 56). Therefore, the curve with lower � log( (p; 56)) value actually represents higher

scalability than the curve with higher � log( (p; 56)) value.

A single bus is an e�cient architecture to support the shared-memory communication model

and has been used successfully in several commercial shared-memory machines. Due to network

contention, the single bus architecture is di�cult to use to support a large number of processors

e�ciently. All the commercially available machines with bus communication network share less

than 40 processors. In order to build a scalable shared virtual memory machine, the architecture

of KSR-1 is designed as a combination of buses and a fat-tree (see Section 3.1). Each local ring

has 32 processors connected to a single bus. Then, the local rings are connected with the fat-tree-

like structure. Theoretically, the computing system can be scaled up to any number of processors

by increasing the number of levels of the tree. Figure 5 shows the limitation of the ring-tree

approach. The scalability is severely reduced when inter-ring remote access is required. It shows

that, unless inter-ring communication can be improved, uniprocessor e�ciency will reduce quickly

with the increase of ensemble size and high computing power may not be achievable by increasing

the number of levels of the fat-tree.

The scalability di�erence given in �gure 5 is based on the measured scalability and the measured

� and �0. Figure 6 shows the scalability di�erence with the theoretical performance data 4, �1,

and �2, where the average speed is �xed at 58% of the peak performance. It gives the theoretical

di�erence of the RLSP application when Group:1 communication is required. Comparing the
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 (p; p0) 1 2 4 8 16 32 56

1 1.00000 0.28382 0.08418 0.01830 0.00459 0.00089 0.00007

2 1.00000 0.29660 0.06446 0.01616 0.00313 0.00026

4 1.00000 0.21734 0.05449 0.01054 0.00088

8 1.00000 0.25070 0.04849 0.00406

16 1.00000 0.19343 0.01621

32 1.00000 0.08378

56 1.00000

Table 3. Measured Scalability of RLSP-KSR1 combination.

curves in �gure 5 with those in �gure 6, we can clearly see the similarity. Both �gures show

that the scalability with remote cache access is much lower than that without considering remote

data access. The general trends in both �gures are very similar. Since the curves in �gure 6

were plotted based on machine speci�cation, it shows that, while machine speci�cation does not

provide good estimate of execution time or speed, it does give a foundation to predict the in
uence

of architecture variation on performance. Equation (3) is a useful tool to predict performance

of an algorithm-machine pair, even when the computing system is scaled up from one level of

architecture hierarchy to two levels. It gives the variation of performance even only the hardware

speci�cation is available. The in
uence of architecture variation is di�erent on di�erent algorithms.

When architecture scales up from one level of hierarchy to another, an algorithm that performed

worse than another algorithm at a less hierarchical architecture might become better on a more

hierarchical architecture. The scalability formula (3) provides a guideline for chosing algorithms as

system size is scaled up.

Figure 7 shows the scalability curves for the Givens Rotation algorithm [5], which can also be

used to solved the least squares problem. The same machine speci�cations as those used for �gure

6 are used in �gure 7. We can see that the scalability of the Givens rotation algorithm is worse

than that of the Householder algorithm. However, the di�erence is decreased when the system

scales up. This demonstrates that the scalability of the Givens algorithm is less a�ected by the

hierarchical remote cache access than the Householder algorithm is. The Givens algorithm may

provide better scalability and, therefore, better execution time when the system size is large enough

so that multi-level ring communication is required. Figure 6 and 7 show how algorithms could be

compared with the notion of scalability.

The average speed amaintained in this study is about 58% of the sustained speed. The e�ciency

maintained is reasonably high. The scalability given in Table 2 and 3 could be higher if a was lower,

as shown in equation (3). Also, the computing rate � in general varies with the number of processors

and problem size on any machine with memory hierarchy. For our implementation, since the initial

problem size is large and it increases with the number of processors, the computing rate is quite
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Equation (23) is used in prediction
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Figure 6. Predicted scalability using machine speci�cations
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Figure 7. Predicted scalability of Givens rotation using machine speci�cations

stable. The scalability prediction will be more involved if the computing rate varies with the system

size [6].

5 Conclusion

Recent trends in parallel processing suggest that the issue of performance prediction is becoming

more complex and di�cult. Massively parallel computing has been adopted as a cost-e�ective

way to achieve high computing power. Sophisticated architectures have been proposed to deliver

performance scalability with a large number of processors. Shared virtual memory and other kinds

of system support, that hide the communication and other implementation details from the users,

are becoming more prevalent. At the same time, with various architectures and algorithms available,

performance prediction is becoming critical in of chosing an appropriate algorithm-machine pair

for an application, especially when the machine has a sophisticated, hierarchical architecture. The

study given in this paper is an attempt to combine simple formulas with run-time information

to provide a reasonable prediction on modern parallel computers. A simple prediction formula is

presented. Then, a case study is conducted on a multi-ring KSR-1 virtual memory machine to

illustrate how the formula could be used in practice. Four di�erent aspects are discussed in the

paper. First, a method is proposed to measure the needed run-time parameters. Second, when the

system size is scaled up from one level of architecture hierarchy to another level of hierarchy, an

adjustment is proposed to catch the in
uence of the architecture variation. Experimental results on

the multi-ring KSR-1 machine shows our predicted performance matchs the measured performance
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well, in both execution time and scalability. Then, with this case study, we have shown that it is

possible to predict the in
uence of architecture hierarchy on scalability by simply using hardware

speci�cations. Finally, we have discussed the issue of choosing an appropriate algorithm for a given

application when the computing system is scaled up from one level of hierarchy to another.

Two basic problems have been addressed in this study: predicting the execution time and pre-

dicting the scalability. Like most existing models, the prediction of execution time relies on run-time

information (such as � and �) which may vary with problem and ensemble size. Our experiments

show, however, that while hardware does not realize the advertized performance in solving ac-

tual applications, the relative performance of architectures and algorithms can be predicted and

compared in terms of scalability given a hardware speci�cation.

While the numerical experiment here was conducted on a KSR-1 machine, the result given in

this study is not limited to the KSR-1 architecture. It is a general result of scalability prediction

and should be useful in evaluation of any scalable architecture and algorithm.
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